?> Oxford BioDynamics Plc Establishes US subsidiary and appoints new commercial lead - DirectorsTalk

Oxford BioDynamics Plc Establishes US subsidiary and appoints new commercial lead

Oxford BioDynamics Plc (LON: OBD), a biotechnology company focused on the discovery and development of epigenetic biomarkers based on regulatory genome architecture, for use within the pharmaceutical and biotechnology industry, announced that it has, in line with its strategy to expand in the US, formed Oxford BioDynamics Inc, a fully-owned subsidiary of Oxford BioDynamics plc and appointed Glen Ferguson as Senior Vice President, USA, to lead the Group’s business development activities in the United States.

Christian Hoyer Millar, Chief Executive Officer of Oxford BioDynamics, said:

“Glen is a strong addition to the OBD leadership team, bringing a wealth of experience in global corporate development and strategic partnerships. Glen’s appointment, and the formation of our new US subsidiary, reinforce our commitment to our business development, particularly in the US, the world’s largest healthcare market.”

Glen Ferguson joins OBD from HealthTell Inc, where he was Vice President, Corporate Development from 2014. At HealthTell, Glen developed and led strategic growth initiatives driving the personalised medicine offering to pharmaceutical and companion diagnostic businesses. Glen brings significant experience in licensing and contract negotiation, developing strategic alliances, and expertise in the field of companion diagnostics, gained in a life sciences industry career spanning over 25 years. Previously, he held senior positions at ApoCell, where he was Vice President, Molecular Biomarkers, Beckman Coulter, Genaissance Pharmaceuticals, and Bristol Myers Squibb, amongst others.

Glen will lead OBD’s US-based business development activities, working closely with the Group’s executive management team to serve OBD’s US partners, customers and collaborators, several of whom Glen has worked with in his previous roles. He will also take up the position of President of Oxford BioDynamics Inc.

Click to view all articles for the EPIC:
Or click to view the full company profile:
    Facebook
    X
    LinkedIn
    Oxford BioDynamics

    More articles like this

    Oxford BioDynamics

    How are EpiSwitch markers detected?

    Introduction: Getting the basics right Oxford BioDynamics’ (OBD) EpiSwitch™ biomarker discovery platform combined with their newly enhanced detection technology gives the company valuable quantitative insights into chromosome conformations (DNA protein complexes) that regulate normal and disease

    Oxford BioDynamics

    What is EpiSwitchTM and how is it used?

    Oxford BioDynamics’ EpiSwitch™ technology is based on epigenetics, mechanisms that alter gene expression without altering the underlying DNA sequence and whose deregulation plays a role in the development of cancer, autoimmune, and neurologic diseases. Although DNA

    Oxford BioDynamics

    Sanders-Brown research highlights form of severe dementia

    The long-running study on aging and brain health at the University of Kentucky’s Sanders-Brown Center on Aging (SBCoA) Alzheimer’s Disease Center has once again resulted in important new findings – highlighting a complex and under-recognized form

    Oxford BioDynamics

    Researchers identify new genetic defect linked to ALS

    Mutations in the UBQLN2 gene, known to cause amyotrophic lateral sclerosis (ALS), promote the buildup of toxic waste in brain cells by preventing the normal function of two cellular degradation mechanisms, a study has found. In addition to its known role

    Oxford BioDynamics

    New questions about Covid-19

    The coronavirus is known with certainty that it emerged in China in November and has since spread to almost the entire world, where it has infected more than 5 million people and killed at least 356,000. Older adults are more

    Oxford BioDynamics

    EpiSwitch technology selected as biomarker platform for COVID-19

    Oxford BioDynamics’ EpiSwitch technology has been chosen as the biomarker platform for prognostic and predictive profiling of COVID-19 patients in the GETAFIX clinical study.Institute of Infection, Immunity and Inflammation, University of Glasgow, and NHS Scotland are

    Oxford BioDynamics

    Rare Diseases Clinical Research Network Opens Online Survey on COVID-19

    The Rare Diseases Clinical Research Network (RDCRN) has opened an online survey to better understand how the COVID-19 outbreak is affecting people with rare diseases, their families, and caregivers. Survey questions cover a patient’s physical and mental health, supply of treatments, and

    Oxford BioDynamics

    Pandemic moves ALS Awareness Month events and activities online

    ALS Awareness Month has been observed each May since 1992. But this year, the COVID-19 pandemic has forced supporters to rethink ways to raise funds and awareness for amyotrophic lateral sclerosis (ALS). In previous years, May has been full of fundraising and educational activities

    Oxford BioDynamics

    ALS Awareness

    “I think it’s time we stop, children, what’s that sound? Everybody look what’s going down.” That call for awareness comes from the song “For What It’s Worth” by Buffalo Springfield. The song’s writer, Stephen Stills, penned the lyrics in

    Oxford BioDynamics

    ALS Awareness Month This May

    Within weeks following my ALS diagnosis, I faced my first ALS Awareness Month. At the time, I was still figuring out exactly what I had and how to pronounce amyotrophic lateral sclerosis. Never mind trying to educate others about it. I hated

    Oxford BioDynamics

    Microarray Facility

    The purpose-built Oxford Biodynamics Array facility offers a complete sample processing service for Comparative Genome Hybridization (CGH) using the Agilent microarray platform.  Agilent’s flexible SurePrint technology produces high-quality arrays of 60-mer oligonucleotides in a range of

    Oxford BioDynamics

    EpiSwitch biomarker discovery platform

    INTRODUCTION • The EpiSwitch biomarker discovery platform detects systemic changes in the cellular genomic architecture using a microarray and PCR-based biomarker platform (Figure 1)1. It identifies and monitors chromosome conformation signatures (CCSs), key regulatory processes that