Extracting graphene from the laboratory has proved challenging, but as Ray Gibbs, CEO of Haydale Graphene Industries PLC (LON:HAYD) explains, improvements in material processing are beginning to pay off, particularly in the aerospace sector.
Graphene has many amazing properties, including high strength and stiffness, high conductivity and impermeability to gases, to name but a few. These headline-grabbing properties have generated a considerable amount of hype, with potential new applications announced almost every day. However, as the graphene story has progressed, the task of translating properties measured in the laboratory into commercial applications has proved a greater challenge than many had anticipated. In particular, producing consistent single layers of graphene – the starting point for many potential electronics applications – is a technically difficult task, and doing so on a commercial scale is expensive.
Fortunately, other types of graphene are beginning to prove their worth in other industry sectors. At my firm, Haydale, our focus is on stacks of graphene with 5–100 layers. Materials at the lower end of this range are generally known as few-layered graphene (FLGs), while those at the higher end are termed graphene nanoplatelets (GNPs). When these materials are added to a resin or other thermoplastic material, the resulting mixture can become stronger, and may also become thermally conductive, electrically conductive or both. These enhancements could have applications in many areas, but they appeal particularly to the aerospace industry. Many key aircraft parts are made from carbon fibres bonded together with a thermoset resin. If this resin had better mechanical properties, it might be possible to reduce the number of carbon-fibre layers required – saving weight and thus cost.