With the increasing amount of renewable energies in an electrical grid, the need for compensation requirements increases in order to avoid shortfalls in coverage. Amongst the possible technologies available are electrochemical energy storage systems such as batteries, redox flow batteries (RFBs) and
combinations of fuel cells and electrolysers
RFBs differ from the other two technologies in that the energy is stored in liquid media and offer the possibility of charging and discharging in the same cell. This allows energy conversion and storage to be scaled separately and flexibly, adapted to the respective application, which in turn creates potential economic advantages over other technologies. Like all other electrochemical energy storage devices, RFBs can be realised in a wide range of size classes. Typical sizes range from a few hundred watts and watt hours of power and energy respectively, to systems with
several megawatts and megawatt hours as large storage devices for grid tasks.
Compared to other storage technologies VRFBs have many advantages:
• High safety (non-flammable and no thermal runaway)
Ferro-Alloy Resources Ltd (LON:FAR) is developing the giant Balasausqandiq vanadium deposit in Kyzylordinskaya oblast of southern Kazakhstan. The ore at this deposit is unlike that of nearly all other primary vanadium deposits and is capable of being treated by a much lower cost process.