Using carbon and ceramics in braking systems offers significant advantages over other materials, but the processes involved in their manufacture are considerably lengthy and more expensive – why are they so expensive and is it worth the cost?
COOL UNDER PRESSURE
Perhaps an indicator to their eventual cost, the use of heat resistant carbon/ceramic based materials originated in the ever so expensive endeavour of space exploration.
The undersides of NASA’s space shuttles were covered in silica ceramic tiles designed to resist the friction heat generated when re-entering the atmosphere – and where the temperatures were at their highest reinforced carbon (RCC) was used, most notably on the nose cone and leading wing edges.
The engineering marvel of Concorde was the first instance of a braking system utilising carbon-carbon (graphite reinforced carbon fibre) components in 1976, before F1 cars picked up on the technology and implemented their own systems by the end of the decade.
Surface Transforms plc (LON:SCE) is a manufacturer of next-generation carbon-ceramic brake discs for automotive and aircraft applications and has been certified to IS9001-2000 since 2008 and was certified to TS16949 automotive quality accreditation and AS9100C aerospace quality accreditation in 2015.